August 24, 2021 Volume 17 Issue 32

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

hyperMILL 2024 CAD/CAM software suite

OPEN MIND Technologies has introduced its latest hyperMILL 2024 CAD/CAM software suite, which includes a range of powerful enhancements to its core toolpath capabilities, as well as new functionality for increased NC programming efficiency in applications ranging from 2.5D machining to 5-axis milling. New and enhanced capabilities include: Optimized Deep Hole Drilling, a new algorithm for 3- and 5-axis Rest Machining, an enhanced path layout for the 3D Plane Machining cycle, better error detection, and much more.
Learn more.


One-part epoxy changes from red to clear under UV

Master Bond UV15RCL is a low-viscosity, cationic-type UV-curing system with a special color-changing feature. The red material changes to clear once exposed to UV light, indicating that there is UV light access across the adhesive material. Although this change in color from red to clear does not indicate a full cure, it does confirm that the UV light has reached the polymer. This epoxy is an excellent electrical insulator. UV15RCL adheres well to metals, glass, ceramics, and many plastics, including acrylics and polycarbonates.
Learn more.


SPIROL Press-N-Lok™ Pin for plastic housings

The Press-N-Lok™ Pin was designed to permanently retain two plastic components to each other. As the pin is inserted, the plastic backfills into the area around the two opposing barbs, resulting in maximum retention. Assembly time is quicker, and it requires lower assembly equipment costs compared to screws and adhesives -- just Press-N-Lok™!
Learn more about the new Press-N-Lok™ Pin.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


3M and Ansys train engineers on simulating adhesives

Ansys and 3M have created an advanced simulation training program enabling engineers to enhance the design and sustainability of their products when using tapes and adhesives as part of the design. Simulation enables engineers to validate engineering decisions when analyzing advanced polymeric materials -- especially when bonding components made of different materials. Understand the behavior of adhesives under real-world conditions for accurate modeling and design.
Read this informative Ansys blog.


New FATH T-slotted rail components in black from AutomationDirect

Automation-Direct has added a wide assortment of black-colored FATH T-slotted hardware components to match their SureFrame black anodized T-slotted rails, including: cube connectors (2D and 3D) and angle connectors, joining plates of many types, brackets, and pivot joints. Also included are foot consoles, linear bearings in silver and black, cam lever brakes, and L-handle brakes. FATH T-slotted hardware components are easy to install, allow for numerous T-slotted structure configurations, and have a 1-year warranty against defects.
Learn more.


Weird stuff: Moon dust simulant for 3D printing

Crafted from a lunar regolith simulant, Basalt Moon Dust Filamet™ (not a typo) available from The Virtual Foundry closely mirrors the makeup of lunar regolith found in mare regions of the Moon. It enables users with standard fused filament fabrication (FFF) 3D printers to print with unparalleled realism. Try out your ideas before you go for that big space contract, or help your kid get an A on that special science project.
Learn more.


Break the mold with custom injection molding by Rogan

With 90 years of industry experience, Rogan Corporation possesses the expertise to deliver custom injection molding solutions that set businesses apart. As a low-cost, high-volume solution, injection molding is the most widely used plastics manufacturing process. Rogan processes include single-shot, two-shot, overmolding, and assembly. Elevate your parts with secondary operations: drilling and tapping, hot stamping, special finishes, punch press, gluing, painting, and more.
Learn more.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


New interactive digital catalog from EXAIR

EXAIR's latest catalog offers readers an incredible source of innovative solutions for common industrial problems like conveying, cooling, cleaning, blowoff, drying, coating, and static buildup. This fully digital and interactive version of Catalog 35 is designed for easy browsing and added accessibility. Customers can view, download, print, and save either the full catalog or specific pages and sections. EXAIR products are designed to conserve compressed air and increase personnel safety in the process. Loaded with useful information.
Check out EXAIR's online catalog.


5 cost-saving design tips for CNC machining

Make sure your parts meet expectations the first time around. Xometry's director of application engineering, Greg Paulsen, presents five expert tips for cutting costs when designing custom CNC machined parts. This video covers corners and radii, designing for deep pockets, thread depths, thin walls, and more. Always excellent info from Paulsen at Xometry.
View the video.


What can you secure with a retaining ring? 20 examples

From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.


Load fasteners with integrated RFID

A crane, rope, or chain may be required when something needs lifting -- plus anchoring points on the load. JW Winco offers a wide range of solutions to fasten the load securely, including: lifting eye bolts and rings (with or without rotation), eye rings with ball bearings, threaded lifting pins, shackles, lifting points for welding, and more. Some, such as the GN 581 Safety Swivel Lifting Eye Bolts, even have integrated RFID tags to clearly identify specific lifting points during wear and safety inspections and manage them digitally and without system interruption.
Learn more.


Couplings solve misalignments more precisely with targeted center designs

ALS Couplings from Miki Pulley feature a simplistic, three-piece construction and are available in three different types for more precisely handling parallel, angular, or axial misalignment applications. The key feature of this coupling design is its center element. Each of the three models has a center member that has a unique and durable material and shape. Also called a "spider," the center is designed to address and resolve the type of misalignment targeted. Ideal for unidirectional continuous movement or rapid bidirectional motion.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


How a moving platform -- and not a moving nozzle -- can cut waste and costs in 3D printing

Researchers at the USC Viterbi School of Engineering have developed a unique, low-cost, dynamically controlled surface for 3D printers that reduces waste and saves time.

3D printing has the potential to revolutionize product design and manufacturing in a vast range of fields -- from custom components for consumer products, to 3D-printed dental products and bone and medical implants that could save lives. However, the process also creates a large amount of expensive and unsustainable waste and takes a long time, making it difficult for 3D printing to be implemented on a wide scale.

Each time a 3D printer produces custom objects, especially unusually shaped products, it also needs to print supports -- printed stands that balance the object as the printer creates layer by layer, helping maintain its shape integrity. However, these supports must be manually removed after printing, which requires finishing by hand and can result in shape inaccuracies or surface roughness. The materials the supports are made from often cannot be re-used, and so they're discarded, contributing to the growing problem of 3D-printed waste material.

For the first time, researchers in USC Viterbi's Daniel J. Epstein Department of Industrial and Systems Engineering have created a low-cost, reusable support method to reduce the need for 3D printers to print these wasteful supports, vastly improving cost effectiveness and sustainability for 3D printing.

A new dynamically controlled base for 3D printing (left) could reduce the need for printed supports (center), cutting wastage and saving time. [Credit: Yong Chen]

 

 

 

 

The work, led by Yong Chen, professor of industrial and systems engineering, and PhD student Yang Xu has been published in Additive Manufacturing.

Traditional 3D printing using the Fused Deposition Modeling (FDM) technique prints an object layer by layer directly onto a static metal surface. The new prototype uses a programmable, dynamically controlled surface made of movable metal pins to replace the printed supports. The pins rise up as the printer progressively builds the product. Chen said that testing of the new prototype has shown it saves around 35% in materials used to print objects.

"I work with biomedical doctors who 3D print using biomaterials to build tissue or organs," Chen said. "A lot of the materials they use are very expensive -- we're talking small bottles that cost between $500 to $1,000 each."

"For standard FDM printers, the materials cost is something like $50 per kilogram, but for bioprinting, it's more like $50 per gram. So if we can save 30% on material that would have gone into printing these supports, that is a huge cost saving for 3D printing for biomedical purposes," Chen said.

In addition to the environmental and cost impacts of material wastage, traditional 3D-printing processes using supports is also time consuming, Chen said.

"When you're 3D printing complex shapes, half of the time you are building the parts that you need; the other half of the time you're building the supports. So with this system, we're not building the supports. Therefore, in terms of printing time, we have a savings of about 40%."

Chen said that similar prototypes developed in the past relied on individual motors to raise each of the mechanical supports, resulting in highly energy-intensive products that were also much more expensive to purchase, and thus not cost effective for 3D printers.

"So if you had 100 moving pins and the cost of every motor is around $10, the whole thing is $1,000, in addition to 25 control boards to control 100 different motors. The whole thing would cost well over $10,000," Chen said.

The research team's new prototype works by running each of its individual supports from a single motor that moves a platform. The platform raises groups of metal pins at the same time, making it a cost-effective solution. Based on the product design, the program's software would tell the user where they need to add a series of metal tubes into the base of the platform. The position of these tubes would then determine which pins would raise to defined heights to best support the 3D-printed product, while also creating the least amount of wastage from printed supports. At the end of the process, the pins can be easily removed without damaging the product.

Chen said the system could be adapted easily for large-scale manufacturing, such as in the automotive, aerospace, and yacht industries.

"People are already building FDM printers for large-size car and ship bodies, as well as for consumer products such as furniture. As you can imagine, their building times are really long -- we're talking about a whole day," Chen said. "So if you can save half of that, your manufacturing time could be reduced to half a day. Using our approach could bring a lot of benefits for this type of 3D printing."

Chen said the team had also recently applied for a patent for the new technology. The research was co-authored by Ziqi Wang, previously a visiting student at USC, from the School of Computer and Communication Sciences, EPFL Switzerland, and Siyu Gong from USC Viterbi.

Source: University of Southern California

Published August 2021

Rate this article

[How a moving platform -- and not a moving nozzle -- can cut waste and costs in 3D printing]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2021 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy